Окислительное фосфорилирование.

Механизмы перекачивания протонов компонентами дыхательной цепи.

В процессе окислительного фосфорилирования при окислении одной молекулы НАДН (т.е. при прохождений двух электронов через все три ферментных комплекса) образуется не более трех молекул АТФ. Если предположить, что обратное прохождение трех протонов через АТФ-синтетазу обеспечивает синтез одной молекулы АТФ, можно будет заключить, что в среднем перенос одного электрона каждым комплексом сопровождается перемещением полутора протонов (иными словами, при транспорте одного электрона некоторые комплексы перекачивают один протон, а другие - два протона). Вероятно, у разных компонентов дыхательной цепи существуют разные механизмы сопряжения транспорта электронов с перемещением протонов. Аллостерические изменения конформации белковой молекулы, связанные с транспортом электронов, могут в принципе сопровождаться «перекачиванием» протонов, подобно тому как перемещаются протоны при обращении действия АТФ-синтетазы. При переносе каждого электрона хинон захватывает из водной среды протон, который затем отдает при высвобождении электрона. Поскольку убихинон свободно передвигается в липидном бислое, он может принимать электроны вблизи внутренней поверхности мембраны и передавать их на комплекс b-с1 около ее наружной поверхности, перемещая при этом через бислой по одному протону на каждый перенесенный электрон. С помощью более сложных моделей можно объяснить и перемещение комплексом b-c1 двух протонов на каждый электрон, предположив, что убихинон повторно проходит через комплекс b-c1 в определенном направлении. Приборы для изучения растений снижены цены на оборудование для изучения.

В отличие от этого молекулы, передающие электроны цитохромоксидазному комплексу, по-видимому, не переносят протонов, и в этом случае транспорт электронов, вероятно, связан с определенным аллостерическим изменением конформации белковых молекул, в результате которого какая-то часть белкового комплекса сама переносит протоны.

Действие разобщителей.

С 40-х годов известен ряд липофильных слабых кислот, способных действовать как разобщающие агенты, т.е. нарушать сопряжение транспорта электронов с синтезом АТФ. При добавлении к клеткам этих низкомолекулярных органических соединений митохондрии прекраща­ют синтез АТФ, продолжая при этом поглощать кислород. В присутствии разобщающего агента, скорость транспорта электронов остается высокой, но протонный градиент не создается. Это простое объяснение этого эффекта: разобщающие агенты (например, динитрофенол, тироксин) действуют как переносчики Н+ (Н+-ионофоры) и открывают дополнительный путь - уже не через АТФ-синтетазу – для потока Н+ через внутреннюю митохондриальную мембрану.[13, 2000]

Дыхательный контроль.

Когда к клеткам добавляют разобщающий агент, например динитрофенол, поглощение кислорода митохондриями значительно возрастает, так как скорость переноса электронов увеличивается. Такое ускорение связано с существованием дыхательного контроля.

Полагают, что этот контроль основан на прямом инги6ирующем влиянии электрохимического протонного градиента на транспорт электронов. Когда в присутствии разобщителя электрохимический градиент исчезает, не контролируемый более транспорт электронов достигает максимальной скорости. Возрастание градиента притормаживает дыхательную цепь, и транспорт электронов замедляется. Более того, если в эксперименте искусственно создать на внутренней мембране необычно высокий электрохимический градиент, то нормальный транспорт электронов прекратится совсем, а на некоторых участках дыхательной цепи можно будет обнаружить обратный поток электронов. Это позволяет пред­полагать, что дыхательный контроль отражает простой баланс между изменением свободной энергии при перемещении протонов, сопряжен­ного с транспортом электронов, и изменением свободной энергии при самом транспорте электронов.Величина электрохимического градиента влияет как на скорость, так и на направление переноса электронов, так же как и на направление действия АТФ-синтетазы.

Перейти на страницу:
2 3 4 5 6 7 8