Окислительное фосфорилирование.

Огромное количество свободной энергии, высвобождаемое при окислении, может эффективно использоваться только мелкими порциями. В сложном процессе окисления участвует много промежуточных продуктов, каждый из которых лишь незна­чительно отличается от предыдущего. Благодаря этому высвобождаемая энергия дробится на меньшие количества, которые можно эффективно преобразовывать с помощью сопряженных реакций в высо­коэнергетические связи молекул АТФ и НАДH .

В 1960 г. было впервые показано, что различные мембранные белки, участвующие в окислительном фосфорилировании, могут быть вы­делены без потери активности. От поверхности субмитохондриальных частиц удалось отделить и перевести в растворимую форму усеивающие их крошечные белковые структуры. Хотя субмитохондриальные частицы без этих сферических структур продолжали окислять НАДH в присутствии кислорода, синтеза АТФ при этом не происходило. С другой стороны, выделенные структуры действовали как АТФазы, гидролизуя АТФ до АДФ и Фн. Когда сферические структуры (названные F1-АТФазами) добавляли к лишенным их субмитохондриальным частицам, реконструированные частицы вновь синтезировали АТФ из AДФ и Фн.

F1- АТФаза - это часть большого, пронизывающего всю толщу мембраны комплекса, который состоит по меньшей мере из девяти различных полипептидных цепей. Этот комплекс получил название АТФ-синтетаза; он составляет около 15% всего белка внутренне митохондриальнои мембраны. Весьма сходные АТФ-синтетазы имеются в мембранах хлоропластов и бактерий. Такой белковый комплекс содержит трансмембранные каналы для протонов, и происходит только тогда, когда через эти каналы проходят протоны вниз по своему электрохимическому градиенту.

АТФ-синтетаза может действовать в обратном направлении - расщеплять АТФ и перекачивать протоны. Действие АТФ-синтетазы обратимо: онa способна использовать как энергию гидролиза АТФ для перекачивания протонов через внутреннюю митохондриальную мембрану, так и энергию потока протонов по электрохимическому градиенту для синтеза АТФ. Таким образом, АТФ-синтетаза - это обратимая сопрягающая система, которая осуществляет взаимопревращение энергии электрохимического протонного градиента и химических связей. Направление ее работы зависит от соотношения между крутизной протонного градиента и локальной величиной DG для гидролиза АТФ.

АТФ-синтетаза получила свое название в связи с тем, что в обычных условиях npoтоннoro градиента, поддерживаемого дыхательной цепью, синтезирует большую часть всего АТФ клетки. Число протонов, необходимое для синтеза одной молекулы АТФ, в точности не известно. При прохождении через АТФ-синтетазу протонов синтезируется одна молекула АТФ.

Как будет работать в данный момент АТФ-синтетаза - в направлении синтеза или гидролиза АТФ, - зависит от точного баланса между изменениями свободной энергии для прохождения трех протонов через мембрану в матрикc и для синтеза АТФ в матриксе. Как уже говорилось, величина DGсинт.АТФ определяется концентрациями трех веществ в матриксе митохондрии - АТФ, AДФ и Фн. При постоянной протонодвижущей силе АТФ-синтетаза будет синтезировать ATФ тех пор, пока отношение АТФ к AДФ и Фн не достигнет такого значения, при котором величина DGсинт.АТФ станет в точности равна +15,2ккaл/мoль. При таких условиях синтез АТФ будет точно уравновешиваться его гидролизом.

Предположим, что в связи с реакциями, требующими затраты энергии, в цитозоле внезапно гидролизовалось большое количество АТФ, и это привело к падению отношения АТФ:AДФ в матриксе митохондрии. В этом случае DGсинт. понизится и АТФ-синтетаза вновь переключится на синтез АТФ, пока не восста­новится исходное отношение АТФ:AДФ. Если же протонодвижущая сила внезапно снизится и будет поддерживаться на постоянном уровне, то АТФ-синтетаза начнет расщеплять АТФ, и эта реакция будет продолжаться до тех пор, пока соотношение между концентрациями ATФ и AДФ не достигнет какого-то нового значения (при котором DGсинт.АТФ = +13,8 ккал/моль), и так далее.

Перейти на страницу:
1 2 3 4 5 6 7 8