Метод пэтч-кламп

Метод пэтч-кламп (patch-clamp) позволяет осуществлять локальную (точечную) фиксацию мембранного потенциала и измерять токи через одиночные ионные каналы. На данный момент этот метод является мощным средством для исследования биомембран. Метод позволяет:

1. проводить многие исследования в рамках классических электрофизиологических подходов.

2. регистрировать токи и потенциалы от клеток очень малых размеров (3-10 мкм)

3. регистрировать токи одиночных каналов амплитудой порядка пикоампер

4. исследовать действие лекарственных препаратов при быстром подведении их как к наружной, так и к внутренней стороне мембраны

Метод пэтч-кламп был введен в исследовательскую практику Неером и Сакманом, когда в 1976 году ими была опубликована статья в журнале “Nature”, которая называлась “Токи через одиночные каналы в мембране волокна денервированной мышцы лягушки”. Это открыло путь для изучения на молекулярном уровне электрических свойств мембран и регуляции различных транспортных процессов.

Основой для создания метода послужило обнаружение факта, что при определённых условиях клеточная мембрана формирует очень плотный контакт с поверхностью кончика стеклянного микроэлектрода. При небольшом разрежении, создаваемом внутри пипетки, между стеклом и мембранным фрагментом возникает контакт, имеющий гигаомное сопротивление. В результате образуется электрически изолированный участок мембраны, и шум регистрирующего сигнала уменьшается на несколько порядков. Так как контакт мембраны со стеклом очень прочен, то находящийся под кончиком электрода фрагмент надо либо изолировать от клетки, либо разрушить, и таким образом проникнуть внутрь клетки. Существует несколько вариантов метода пэтч-кламп (рис.2).

Наиболее близким к естественным условиям является вариант измерения ионных токов на прикреплённой, но неповрежденной (cell-attached) клетке, поскольку исследуемый участок г99зэмембраны не отделяется от клетки и не нарушается его связь с цитоплазмой. Измерение на целой клетке при разрушении мембраны в кончике микропипетки (whole-cell) позволяет заменять ионный состав цитоплазмы и изучать на диализированных таким образом клетках ионные токи в режиме фиксации напряжения.

Ионные токи через небольшие мембранные фрагменты измеряют с помощью пипеток, у которых диаметр кончика соизмерим с размерами фрагментов. Сопротивление пипеток, заполненных раствором 150 ммоль/л KCl и погруженных в раствор такой же концентрации, приблизительно линейно зависит от площади отверстия кончика и варьирует от 1 до 5 МОм. Площадь отверстия кончика пипетки можно варьировать от 1 до 8 мкм2, изменяя степень нагрева спирали на последнем этапе вытягивания. Эти размеры находятся на грани разрешения светового микроскопа. Наружную поверхность покрывают гидрофобным материалом – силгардовой резиной. Особенностью незастывшего силгарда является его способность растекаться тонкой пленкой по поверхности стекла на несколько миллиметров, покрывая при этом и кончик микроэлектрода. Так как высокоомные контакты образуются только с чистым стеклом, эту пленку необходимо удалять только оплавлением микроэлектродов. При работе на мембранных фрагментах используется несколько типов пипеток.

Пипетки из тугоплавкого стекла получили в практике большее применение, чем пипетки из мягкого стекла. Первые имеют больше удельное сопротивление, чем мягкое стекло с более низкой температурой плавления. Вследствие этого вклад шума, обусловленного ёмкостью связи через стеклянную стенку в пипетках с тугоплавким стеклом меньше.

Пипетки из толстостенного тугоплавкого стекла имеют ряд преимуществ. Во-первых, при большей толщине стенок шунтирующая проводимость через стекло меньше. Во-вторых, на некоторых препаратах гигаомные контакты более стабильны и величина их образования значительно больше, чем для аналогичных

тонкостенных пипеток

Табл.1. Геометрические параметры

кончиков пипеток, изготавливаемых

из различных типов ст. капилляров

Материал, из которого изготовлены пипетки

Площадь отверстиямкм2

Площадь кольца, мкм2

Ширина кольца,

мкм

Угол конуса,

град

Тонкостенные капилляры CEE BEE – мягкое стекло

1.0

0,79

0,19

24

Кимакс – твердое боросиликатное стекло

1,2

0,82

0,2

20

Алюминиевое – твердое алюмосиликатное стекло

1,0

0,9

0,22

25

Тонкостенные капилляры Jencons – твердое боросиликатное стекло

1,01

1,71

0,39

10

Перейти на страницу:
1 2