ДНК Ti-плазмиды можно использовать в качестве вектора

Т-ДНК Ti-плазмид обладает двумя свойствами, делающими ее по существу идеальным вектором для введения чужеродных генов в клетки растений. Во-первых, круг хозяев агробактерий очень широк: они трансформируют клетки практически всех двудольных растений. Известно, что можно добиться заражения однодольных, в том числе злаков. Во-вторых, интегрированная в состав генома растения Т-ДНК наследуется как простой доминантный признак в соответствии с законами Менделя, а ее гены имеют собственные промоторы (регуляторная область гена, определяющая время и место его экспрессии), под контролем которых могут экспрессироваться вставленные в Т-ДНК чужеродные гены. Лучших термопотов рейтинг 2020 отзывы fanera-info.ru.

Простейший способ введения Т-ДНК в клетки растения состоит в том, чтобы заразить его A. tumefaciens, содержащей подходящую Ti-плазмиду, и предоставить дальнейшее естественному ходу событий. Необходимо только уметь встраивать нужные гены в Т-сегмент ДНК плазмиды. Однако размеры целой Ti-плазмиды существенно больше размеров молекул, обычно используемых в работе с рекомбинантной ДНК. Чтобы преодолеть эту трудность, разработан следующий подход. Прежде всего Т-сегмент вырезают из Ti-плазмиды с помощью рестриктаз и встраивают в один из стандартных плазмидных векторов для размножения в клетках бактерий - Escherichia coli. E. сoli содержит плазмиду pBR322, которая способна к саморепликации, то есть размножению, приводящему к увеличению числа ее копий. После того как в плазмиду pBR322 внедрили участок Ti-плазмиды, это рекомбинантная структура может затем реплицироваться многократно, что приводит к увеличению числа копий участков Ti-плазмиды. Этот процесс называется клонированием. Бактерии, содержащие плазмиду pBR322 с участком Т-ДНК, размножают, после чего эту плазмиду выделяют. Затем с использованием рестриктаз и стандартных приемов работы с рекомбинантной ДНК в Т-сегмент встраивают определенный ген. Этот молекулярный гибрид, теперь уже содержащий Т-ДНК со встроенным в нее геном, снова размножают в E. сoli, а затем вводят в клетки A. tumefaciens, несущие соответствующую полную Ti-плазмиду. В результате обмена идентичными участками (гомологичная рекомбинация) между Т-сегментами нативной и сконструированной Ti-плазмид Т-ДНК со встроенным чужеродным геном включается в Ti-плазмиду, замещая нормальную Т-ДНК. Таким образом, мы получаем клетки A. tumefaciens, несущие Ti-плазмиду со встроенным в Т-сегмент нужным геном. Последний этап заключается в заражении растений этими модифицированными генно-инженерными методами агробактериями. Клетки полученных трансгенных растений будут содержать интегрированную Т-ДНК со встроенным чужеродным геном, то есть цель работы, состоявшая во введении данного гена в геном растения, будет достигнута. Недавние исследования, однако, показали, что эту процедуру можно упростить, если использовать бинарные векторные системы, создание которых заключается в том, что агробактериальная клетка должна содержать по крайней мере две разные модифицированные Ti-плазмиды. Одна из них должна содержать только vir-область, гены которой будут участвовать в вырезании Т-ДНК. Такие плазмиды называют плазмидами-помощницами. Вторая Ti-плазмида должна содержать область Т-ДНК с нужным встроенным геном. Продукты vir-генов способны вырезать Т-ДНК как на собственной плазмиде, так и на соседней, то есть vir-гены могут работать вне зависимости от их местоположения. Таким образом, если клетки агробактерии содержат Ti-плазмиду с сегментом vir и другую плазмиду с Т-ДНК, несущей встроенный ген, эти бактерии могут трансформировать клетки растений.

В целом идеальная векторная система на основе Ti-плазмиды должна: 1) содержать все сигналы, необходимые для переноса и стабильной интеграции в ядерную ДНК растений; систему для экспрессии чужеродных генов в растениях (узнаваемый растительными полимеразами промотор), маркер, который необходим для селекции трансформированных клеток; 2) не содержать онкогенов, то есть генов, которые подавляют дифференцировку растительных клеток. Второй пункт достигается с помощью транспозонного мутагенеза (транспозон - последовательность ДНК, способная перемещаться по геному). В результате введения транспозона в Т-ДНК можно выключить гены, которые приводят к опухолеобразованию (iaaM, iaaH, ipt), что не отражается на механизме переноса Т-ДНК. Обычно используют бактериальные транспозоны (Tn5, Tn7). При этом снимается блок с процессов регенерации. При модификации Ti-плазмиды необходимо предусмотреть также наличие уникальных сайтов рестрикции, в которые будет клонирован чужеродный фрагмент ДНК. Такие уникальные сайты рестрикции создаются включением в искусственные Ti-конструкции последовательностей, которые содержат множественные сайты разрезания для рестриктаз EcoR1, Hind III, BamH1 и др. В некоторых случаях в одном множественном сайте имеется 18-20 сайтов, узнаваемых разными рестриктазами, почему эти участки и называются полилинкерами.

Перейти на страницу:
1 2